Allegheny Health Network
Find a
Doctor
Request An Appointment Login to
MyChart
Patient
Center
News Classes &
Events
Contact
Us
Call 412.Doctors

News

Allegheny Health Network researchers explore next-generation single-dose antidotes for opioid overdoses

Monday, April 1, 2019

PITTSBURGH – The U.S. opioid epidemic is being driven by an unprecedented surge in deaths from fentanyl and other synthetic opiates. Fentanyl’s powerful effects are long-lasting, and even tiny amounts of the drug can lead to an overdose. Antidotes, such as naloxone, do not last long enough in the body to fully counter the drug, requiring repeated injections. Now, scientists from the Allegheny Health Network Research Institute report that they are developing single-dose, longer-lasting opioid antidotes using polymer nanoparticles.

Saadyah Averick, Ph.D., a scientist at the AHN Research Institute, will present the results today at the American Chemical Society (ACS) Spring 2019 National Meeting & Exposition. ACS, the world’s largest scientific society, is holding the meeting here through Thursday. It features nearly 13,000 presentations on a wide range of science topics.

“We became interested in this problem while trying to make non-addictive pain medications,” he says. “In that course of research, we realized the limitations of current opioid antidotes.”

According to the U.S. Centers for Disease Control, opioids, such as heroin, oxycodone and fentanyl, were implicated in more than 47,000 deaths from overdose in 2017. These drugs bind to the mu opioid receptor (MOR) in the brain, which is the body’s natural pleasure receptor, explains Averick. “The drugs bind, turn on the receptor and stimulate a euphoric feeling. The synthetic opioids, such as fentanyl, turn this on really, really well,” he says.

And their effects are long-lasting. Fentanyl, which is much stronger than morphine, another opioid, can be absorbed into fat tissue, which protects it from being metabolized right away. It is then slowly released from this tissue, causing effects for several hours. Naloxone, an MOR antagonist and antidote, only stays in the system for about 30 minutes to an hour, however. Because of this mismatch, repeated doses are required to help the patient recover. But not all patients want to undergo the entire treatment course, and they can end up succumbing to an overdose after the naloxone is metabolized.

To overcome this challenge, Averick and his colleagues developed a drug delivery system intended to ensure that a steady, sufficient dose of antagonist is delivered over 24 hours. The researchers reacted naloxone, which has a multi-ringed chemical structure, with polylactic acid (PLA), thus creating a naloxone polymer. They then prepared covalent nanoparticles (CNPs) by adding this polymer to a solution of polyvinyl alcohol. They used a variety of analytical methods to purify and analyze the resulting particles, which are 300 nanometers in diameter.

“In collaboration with the Kolber Laboratory at Duquesne University, proof-of-concept research has shown that these nanoparticles can deliver sufficient naloxone in a linear time-release fashion to block morphine’s analgesic effect for 24 hours,” Averick notes. “As a next step, the study will be extended to fentanyl.”

The researchers are also planning to investigate how particle size impacts naloxone release from the nanoparticle. “Ultimately, we hope to develop a therapeutic intervention for fentanyl overdose that can be used in the field, perhaps supplanting short-acting naloxone as an overdose antidote of choice,” Averick says. “We anticipate that this drug delivery system will also be effective for other non-fentanyl opioids.”

###

About the American Chemical Society

The American Chemical Society, the world’s largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.