Should I Do a Reverse Total Shoulder Arthroplasty?

Edward L. Birdsong, M.D.
Hand and Upper Extremity Center
Allegheny Orthopaedic Associates
Allegheny Health Network
Allegheny General Hospital
Nuts and Bolts, Naples, FL

No disclosures for this presentation.

Goals of Lecture

• Be able to discuss the utility of reverse total shoulder arthroplasty (rTSA) in your practice.
• Understand the design differences between reverse total shoulder arthroplasty
• Be aware of the general procedure and identify technical tips to allow for ease of implantation.

Poll of Hands

• In your practice, do you do the following surgeries?
 • Rotator cuff surgery?
 • Proximal humerus fracture ORIF?
 • Shoulder hemiarthroplasty?
 • Total shoulder arthroplasty?
 • Reverse total shoulder arthroplasty?
Arthritis

- Arthritis and joint pain affect 1 in 3 adults
 - Caucasian
 - Men over 45
 - Women over 55
 - Overweight and inactive individuals
- Shoulder Arthritis
 - Less common, just as debilitating
 - Causes depression, activity limitation, decreased job performance

Causes of Shoulder Arthritis

- Primary
 - Osteoarthritis- Unknown etiology
- Secondary
 - Atraumatic (Alcohol, corticosteroid, cytotoxic drugs)
 - Post-inflammatory (crystals, rheumatoid, rotator cuff)
 - Post-surgical (Capsulorraphy, intraarticular hardware)
 - Post-traumatic (dislocation, fracture, AVN)

Increasing Usage of Shoulder Arthroplasty

- 2002
 - 25K primary arthroplasty
 - 41:59 TSA vs HA
- 2011
 - 67K primary arthroplasty
 - 30K (44%) were reverse TSA

Reverse TSA cleared by FDA in 2004
Indications for Reverse TSA
- Irreparable rotator cuff tear with poor motion
- Cuff tear arthropathy
- Fracture sequelae
- Instability
- Revision arthroplasty
- Tumor

Contraindications for Reverse TSA
- Poorly or nonfunctioning deltoid
 - Trauma
 - Stroke
 - Birth palsy
- Painful, irreparable cuff tear with good active motion

Technically Complex Variations
- Referral to tertiary center
- Revision surgery
- Significant glenoid bone loss
- Need for muscle transfers
- Previous fixation in the glenoid
 - Labral anchors
 - Laterjet
Which Total Arthroplasty System to Use?

Biomechanics and Implant Styles

- **Historical**
 - **Neer Prosthesis (1970)**
 - High failure rate at glenoid
 - Loss of motion
 - **Current**
 - **Grammont (1985)**
 - **4 features**
 - Inherently stable
 - Weightbearing surface must be convex
 - Center of sphere within scapula neck
 - Center of rotation medialized and distalized
 - Basis for most designs today

Controversy in Implant Designs

- **Current Designs**
 - Medialized vs. Lateralized
 - Scapular notching and decreased ROM, less stability
 - Less notching, increased motion and stability
 - Glenoid failure in older designs
 - **130 degree versus 150 degree**
 - Lateral displacement-less notching
 - Inferior displacement—tensions deltoïd
 - More stable at internally rotated position

Oh et al. JSES 2014
Virani et al. JSES 2013
Biomechanics and Implant Styles

- Best Implant?
 - Stable joint
 - Provides greatest range of motion
 - No impingement or notching
 - Low failure rate

- Best Implant for you…
 - What you feel most comfortable using
 - Depends on your experience and outcomes

Surgical Approach

- Deltipectoral
 - Advantages
 - Extensile, Intermuscular and internervous
 - Inferomedial osteophytes, inferior capsule, and humerus access
 - Disadvantages
 - Instability (5.1% vs 0.8%)
 - Subscapularis damage
 - Glenoid exposure

Gilliespie et. al. 2015 Orthop clin N Am.

Surgical Approach

- Anterosuperior
 - Advantages
 - En face view of glenoid
 - Preserve subscapulants
 - Disadvantages
 - Difficult to place glenoid with inferior tilt - increased notching (86% vs 56%)
 - Medial calcar osteophytes
 - Theoretical deltoid injury and dehiscence
 - Non-extensile

Gilliespie et. al. 2015 Orthop clin N Am.
General Procedure (Deltoplectoral)
- Incision, dissection through interval
- Biceps tenodesis vs tenotomy
- Subscapularis peel vs osteotomy vs tenotomy
- Humeral head resection
- Glenoid preparation
- Metaglene and glensphere placement
- Humeral broaching
- Trialing and implantation

Technical Pearls
- Glenoid Exposure
 - Patient positioning
 - Incision placement
 - Development of subdeltoid and subacromial space
 - Humeral head resection
 - Removal of osteophytes (posterior osteophytes)
 - Medial calcar release, osteophyte removal
 - Capsule release
 - From subscapularis
 - Inferior capsule off glenoid
 - Removal of labrum

Prosthesis Positioning
- Humeral component
 - 0 degrees to 30 degrees retroverted
 - Range of motion unchanged
 - Slightly better IR with 0 degrees
- Glenoid component
 - 0 degrees retroverted
 - Inferiorly placed on glenoid
 - 0 to 10 degree inferior tilt
Implant tensioning

- Subjective testing
- Trial and retial
- Beware of overstuffing - neuropraxia
- No significant gapping of glenosphere-poly
 - 0-90 degrees flexion
 - Approximately 50 internal/external rotation
- Reducing components should be snug, but not difficult
- Dislocating component should be somewhat difficult, but not impossible
- “Finger testing”

Repairing Tissue

- Subscapularis controversy
 - Repair - provides anterior support
 - data tends to favor, but not consensus
 - May cause “Hornblower”
 - May be implant dependent
 - Not repair
 - limits external rotation
 - creates contracture
 - increases work from deltoid
- Tuberosities in fracture
 - Consensus now is to attempt fixation of all tuberosities (suture repair)
 - Questionable union rates of tuberosities

Boileau P et. al. JSES 2002
Onstot B et al. ORS Meeting 2012
Ackland et. al. 2010 JBJS

Post-operative protocol

- Many available
 - Early vs. late ROM, PT vs. home therapy

Author’s Protocol

- Post-operatively
 - Sling
 - hand/wrist/thumb ROM
 - 2 week follow-up
 - Begin passive ROM
 - continue sling
 - PT if concern of compliance
 - 6 week follow-up
 - Out of sling
 - If achieved full PROM, begin AROM
 - 12 week follow-up
 - If full AROM, begin strengthening
Outcomes

- rTSA versus ORIF for proximal humerus fracture
 - (Chalmers JSES 2014) rTSA > ORIF for ROM and cost

- rTSA vs Hemiarthroplasty for fracture
 - Against (Ferrel JOT 2015)
 - Better flexion, less ER, similar shoulder scores. Higher complication rate with rTSA but lower revision rate
 - For
 - (Gallinet Ort trauma Surg Res 2009) Better flexion, abduction and constant scores
 - (Garrigues Orthopaedics 2012) Better motion, better shoulder scores
 - Conclusion
 - Elderly with 3-4 part fracture should get rTSA > HA
 - Young with 3-4 part fracture should probably have attempted fixation

- rTSA versus hemi for cuff tear arthropathy
 - (Lueng JSES 2012) rTSA superior in pain relief, function, and elevation at 2 years
 - (Young JBJS 2013) rTSA has better functional outcome

- Return to Activity after rTSA (HSS 2015)
 - 85% returned to 1 sport
 - 5.3 month average time to return
 - 93% good to excellent outcome

- Long term data- rTSA for CTA
 - (Guery JBJS 2006) 8 patients at 10 years. Survivorship at 10 years was 91%, revision rate 84% for CTA
 - (Favard Clin Ort Sur Res 2011) 527 shoulders. Survivorship to 89% at ten years.

Complications

- Meta Analysis 2 year follow-up (Zumstein JSES 2011)
 - Overall complication rates 20.7%
 - Re-operation rate 3.3%
 - Revision rate 10.1%
Why Do Reverse Total Shoulder Arthroplasty?

- Patient factors
 - Patient population aging
 - Increasing incidence of arthritis
 - Number of rotator cuff repairs aging

- Widening Indications
 - Arthritis
 - Cuff tears
 - Fractures

- Surgical factors
 - Similar operative time as other total joints
 - Common approach for shoulder surgeries
 - Reproducible surgery

- Outcomes
 - High patient satisfaction rate
 - Preserve motion
 - Excellent pain relief

THANK YOU!