Ulnar sided wrist pain
“The low back pain of the wrist”

R. Colin Brabender, M.D.
Hand and Upper Extremity Surgeon
Allegheny Health Network

Disclosures

• I have no disclosures/conflicts of interest relevant to this talk

• Often referred to as “black box” of the wrist
 – Complex anatomy
 – Challenging differential diagnosis
 – Variable treatment outcomes
Anatomy

• Normal ROM (Pronation/Supination)
 – 150 to 180 Degrees
• Axis of rotation
 – Through center of radial head and ulnar head
• Ulnar head translation with rotation
 – DORSAL translation with PRONATION
 – PALMAR translation with SUPINATION

Anatomy

• Sigmoid Notch
 – Dorsal rim – acute angulation
 – Volar rim – rounded with cartilaginous lip
 – Flat notch may lead to instability (Tolat 1996)
 – Radius of curvature of sigmoid notch greater than ulnar seat (Af Ekenstam and Hagert 1985)

Ulnar Head

• Distal Ulna
 – Sigmoid Articular
 – Up to 220 degrees of articular cartilage
 – Distal Articular
 – Spherical to flat
 – Semilunar area of cartilage
 – Articulates with TFCC Disc
 – Fossa
 – No cartilage
 – Attachment site for Radioulnar and Ulnocarpal ligaments
 – Very vascular
 – Ulnar Styloid
 – 2-6 mm
 – ECU sheath attachment
 – Radioulnar ligament attachment
Joint Reactive Forces

- Neutral Position (af Ekenstam 1984)
 - Capitate through SLL to articular ridge of distal radius
 - 84% of load transmitted through radius

- Ulnar Deviation
 - Through central articular disk
 - Force can increase 150%

- Ulnar variance (Palmer 1988)
 - Neutral Variance = 16-18% load through ulna
 - Shortening by 2.5mm = 4% ulnar load
 - Lengthening by 2.5mm = 42% ulnar load

DRUJ Stability

- Intrinsic
 - Dorsal and palmar radioulnar ligaments

- Extrinsic
 - ECU
 - ECU Sheath
 - Pronator quadratus
 - Intemnsseous ligament of forearm

TFCC Anatomy

- Superficial Radioulnar Ligaments
 - Insert onto STYLOID
 - Acute angle of insertion

- Deep Radioulnar Ligaments
 - Insert onto FOVEA
 - Obtuse angle of insertion is mechanically advantageous
 - Ligamentum subcruentum (Kauer 1975)
TFCC Anatomy

• Hagert (1994)

- SUPINATION
 • Palmar superficial - tight
 • Dorsal deep - tight

- PRONATION
 • Dorsal superficial - tight
 • Palmar deep - tight

Evaluation

• Divide ulnar sided wrist pain into
 – Acute traumatic
 – Chronic overuse
 – Chronic degenerative

Physical Exam

• Position patient across from you with elbow 90 and fingers toward ceiling
 – Inspection
 – Palpation
 • LT
 • ECU/FCU
 • Fovea
 • DRUJ
Special maneuvers

• LT snuff box test
• LT shuck
• Foveal Sign
• Ulnocarpal stress test
• Piano key test
• ECU synergy test
• ECU subluxation test

Imaging

• X-rays
 – Standard PA and Lateral
 • Don’t depend on lateral to dx DRUJ dislocation/subluxation
 – Check for ulnar variance
 • May use clenched fist to eval for dynamic variance
 • May change >1mm from pronation to supination
 – Lateral Stress Views
 – Signs of DRUJ injury
 • Ulnar styloid base fx
 • Widening of DRUJ
 • >20° dorsal radial angulation
 • >5mm shortening of distal radius

• CT Scan
 – Helpful in identifying pathology of DRUJ
 • Malunions, degenerative changes
 – Eval both wrists: neutral, supinated, pronated

• MRI
 – Variable sensitivity, specificity for TFCC tears
 – Arthrogram improves
 • Better at detecting central TFCC tears and SL tears than peripheral TFCC and LT tears

• Ultrasound
 – Low cost and non-invasive
 – Can be used with hardware without artifact issues
TFCC Tears

- Palmer Classification (1989)
- Class 1: Traumatic
 - A: Central
 - B: Ulnar Avulsion
 - C: Carpal Avulsion
 - D: Radial Avulsion

Chronic TFCC Tears

- Class 2: Degenerative
 - A: TFCC wear
 - B: TFCC wear + chondromalacia
 - C: TFCC perf + chondromalacia
 - D: TFCC perf + chondromalacia + LT lig perf
 - E: TFCC perf + chondromalacia + LT lig perf + UC Arthr.

Treatment of Acute Injuries

- Surgical management is necessary for
 - DRUJ instability
 - Displaced fractures leading to DRUJ malalignment/instability
- Absent instability treatment is conservative
 - Splinting
 - NSAIDs
 - Corticosteroid injection
 - Therapy
Surgical repair

- Open technique described by Hemansdorder and Kleinman
- Variety of arthroscopic techniques
 - Inside out
 - Outside in
 - All inside
- No direct comparisons of techniques
- Key in all is avoid injuring dorsal sensory branch of ulnar nerve
- Success rate of surgery 80-90% in published data

Taken from Arthrex technique guide for knotless TFCC repair
Chronic TFCC Tears

- Most of Palmer Class 2 tears result from excessive loading between the distal ulna and triquetrum
- Degenerative tears are not amenable to repair
- Treatment: Debridement +/- ulnar shortening

Ulnar Impaction Syndrome

- Due to acquired or developmental ulnar positive variance
- Exam
 - Ulnar sided wrist pain and swelling
 - ↑ pain with pronated ulnar deviation and grip
- Imaging
 - X-ray
 - Consider stress radiographs
 - Dynamic ulnar variance
 - MRI

Ulnar Impaction Syndrome

- Treatment
 - Conservative tx first (splinting, activity mod, NSAIDS, injection)
 - Surgery if conservative tx fails
 - Wafer Procedure (Feldon 1992)
 - Partial distal ulnar resection (2-4mm max)
 - Preserves styloid and fovea
 - Arthroscopic or open
 - Ulnar shortening osteotomy
 - Contraindicated with DRUJ arthritis
Ulnar shortening osteotomy

- Converts ulnar positive wrist to ulnar negative
- Generally performed in distal 1/3
- Standard technique is compression plating with transverse or oblique osteotomy
 - Variety of cutting guides now available
- Results of USO overall very good
 - Complications
 - 0-5% nonunion
 - Hardware irritation
- Avoid in patients with DRUJ arthritis and dorsal DRUJ dislocations

Wafer Procedure

- First described as open procedure by Feldon in 1992
 - Reported good to excellent results in 12 of 13 patients
- Arthroscopic technique gaining popularity
 - Create 2-3mm ulnar neg variance using power burr through defect in TFCC
 - Can resect about 5mm of ulna using this technique
- Bernstein et al compared USO to wafer
 - Found similar results overall
 - Recommend wafer
 - No hardware issues
 - No risk of nonunion

LT ligament injuries

- Seen in isolation or in combination with other radiocarpal and intercarpal injuries
- Isolated injuries can be seen from fall on outstretched wrist or direct blow
- Present with ulnar sided pain and swelling
- On exam may show positive provocative maneuvers
- Imaging
 - VISI pattern on lateral radiograph
 - MR arthrogram best test
Treatment

- **Acute stable injuries**
 - Cast immobilize in neutral for 4-6 weeks
- **Late stable injuries**
 - Corticosteroid injection into midcarpal joint

Failure of conservative treatment

- **Arthroscopic evaluation**
 - Evaluate Radiocarpal and Midcarpal joint
 - Geissler I and II
 - Debride tear
 - Geissler III and IV
 - Repair
 - Pinning
 - Fusion

<table>
<thead>
<tr>
<th>Geissler Classification</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Attenuation or hemorrhage of ligament</td>
</tr>
<tr>
<td>II</td>
<td>Incongruity seen from midcarpal joint-less than probe</td>
</tr>
<tr>
<td>III</td>
<td>Incongruity seen from midcarpal and radiocarpal</td>
</tr>
<tr>
<td>IV</td>
<td>Gross instability-arthroscopic drive through</td>
</tr>
</tbody>
</table>

ECU tendonitis

- **Common cause of ulnar sided wrist pain**
 - Difficult to differentiate from intra-articular pathology
- **Multiple causes**
 - Traumatic
 - Chronic overuse
Treatment

- Start with conservative therapy
 - Bracing
 - NSAIDs
- If diagnosis unclear
 - MRI
 - Diagnostic Injection
 - Fill sheath with local +/- corticosteroid

Operative Intervention

- Complete release of fibro-osseous tunnel of 6th dorsal compartment
 - Possible to cause tendon subluxation
- In advanced cases may need to debride tendon
 - Consider interposition graft with severe tendon damage in chronic cases

ECU subluxation

- Can result from trauma
 - Direct blow with wrist supinated and ulnar deviation
- Exam
 - Tenderness over ECU
 - Illicit subluxation
Treatment

- Initial treatment with immobilization
 - Long arm cast with wrist extended, pronated and radial deviated (4-6 weeks)
 - Transition to short arm cast (4 weeks)
 - Physical therapy

Operative Intervention

- Repair
 - Can be difficult in chronic cases
 - Consider deepening of the groove

- Reconstruction
 - Variety of techniques
 - Use local retinaculum flap
 - Use of palmaris graft