Acute Stroke Intervention

- **IV tPA** has been the standard of care since 1995 (NINDS trial)
 - Can only be administered within 3 hours of stroke onset (or last known well)
 - Used off label in select circumstances up to 4.5 hours after stroke onset
- **Limitations to IV tPA**
 - Time window
 - Eligibility criteria (mostly related to bleed risk)

Acute Stroke Intervention

- Endovascular thrombectomy used off label for many years
 - Used in extended time window – usually up to 6 to 8 hours, in some cases longer
 - Low risk of systemic bleeding
 - Rescue therapy – higher rates of recanalization with large vessel occlusions
 - Examples of devices – MERCI, Penumbra, retrievable stents (“stentriever”)
Acute Stroke Intervention

• Why consider endovascular therapy for acute ischemic stroke?
 – IV tPA is not always effective
 • Poor recanalization rates for large vessel occlusion
 • Pts who do not recanalize tend to have poor outcomes
 – Many pts have contraindications to IV tPA
 • TIME – present outside time window
 • Recent procedure, GI bleed, etc

![Graph showing IV tPA recanalization at one hour (angiographic data)](Del Zoppo et al., Ann Neurol 1993)

![Image of middle cerebral artery branches](Proximal middle cerebral artery (M1) - Middle cerebral artery branches (M2, M3) - Internal carotid artery terminus)
Acute Stroke Intervention

Riedel et al. Stroke, 2011

Page 7

Acute Stroke Intervention

Functional Independence

Dependent or bed-bound

Page 8

Acute Stroke Intervention

Page 9
Acute Stroke Intervention

- Intra-arterial thrombolysis
 - 1999 - PROACT II – IA pro-urokinase
 - MCA occlusions
 - Within 6h of stroke onset
 - 40% of treatment group showed improved outcome (mRS ≤ 2) compared to 25% of control group
 - Increased intracranial bleeding rate in rx group (10% vs 3%)
 - No difference in mortality
 - Pro-urokinase not approved by FDA for endovascular treatment of acute ischemic stroke

- 2004 – Interventional Management of Stroke (IMS) trial
 - IV tPA vs. IV tPA + IA tPA
 - Open-label, non-randomized safety trial
 - No difference in mortality, ICH rates, or outcome scores between groups
 - IV tPA as bridging therapy to intra-arterial tPA is safe
 - 2007 – IMS II
 - IV tPA + IA tPA vs. NINDS pts (IV tPA and placebo)
 - Feasibility trial, non-randomized, single-arm
 - Better functional outcome compared to both NINDS groups!
 - No difference in safety endpoints (ICH, mortality)

- Endovascular trials for device approval
 - Single arm, used historical data from prior trials for comparison
 - MERCI/Multi-MERCI
 - Penumbra
 - SWIFT (Solitaire)
 - TREVO
 - FDA 510(k) medical device clearance
 - Easier to obtain than PMA (Pre-marketing approval), which is much more stringent
 - Does the device open up occluded cerebral arteries? Yes/No
 - Endovascular devices are used "off-label" to open arteries when treating acute ischemic stroke
Acute Stroke Intervention

- 2013 – Three randomized, controlled endovascular acute stroke trials
 - IMS III (2006-2012)
 - IV tPA vs. IV tPA + endovascular rx
 - SYNTHESIS (2008-2012)
 - IV tPA vs. endovascular rx alone
 - Standard medical care (may include IV tPA) vs. Standard care + endovascular rx
- No trial showed a benefit in favor of endovascular rx of acute ischemic stroke over the control group

Acute Stroke Intervention

- Several drawbacks:
 - Patient selection
 - Need to establish large vessel occlusion at presentation
 - CTA/MRA not widely available at the time IMS III, SYNTHESIS were initiated
 - Time is brain
 - Long times to treatment with IA therapy (4 to 5.5 hours from onset)
 - Use of newer devices with faster, better recanalization
 - Recruitment issues
 - More effective and speedy recruitment = larger sample size and greater statistical power
 - Competing trials for same patient population
 - Lack of clinical equipoise – desire to use endovascular rx often trumps enrollment into clinical trials

Endovascular Therapy "REEMS" Out Stroke

- REVASCAT
 - June 2015
- ESCAPE
 - February 2015
- EXTEND-IA
 - February 2015
- MR CLEAN
 - December 2014
- SWIFT-PRIME
 - June 2015
MR CLEAN

- Dutch study
- Randomized, controlled, open-label treatment with blinded endpoint assessments
- December 2010 – March 2014
- 16 medical centers (included all stroke centers)
- 500 patients
 - "usual care" (typically IV tPA alone) vs. "usual care" + endovascular rx
- Selection
 - ≥ 18 yo; no upper age limit
 - Proof of anterior circulation artery occlusion on CTA/MRA
 - Ability to initiate IA within 6h of onset
 - NIHSS ≥ 2
- Treatment
 - Endovascular included IA thrombolysis, mechanical thrombectomy, or both

MR CLEAN

RCT of IAT plus usual care vs. usual care.

Similar pre-treatment characteristics

Proximal AOL in the anterior circulation confirmed by CTA < 6 hours from onset

Outcome mRS ≤ 2 at 3 months

260 minutes - average time from start of stroke symptoms to arterial puncture for IAT:
ASPECTS
- Alberta Stroke Program Early CT Score

MR CLEAN
Modified TICI 2b or 3 was 58.7%.
Absolute difference of 13.5% in the rate of functional independence mRS 0-2 in favor of IAT.

TICI Scale
- Thrombolysis In Cerebral Infarction Scale
MR CLEAN

No significant difference in SICH or death.

ESCAPE

Hypothesis – IAT vs standard care in patients with:
1. small core infarct
2. proximal AO and
3. moderate-to-good collateral circulation – CTA multiphase

Stopped for efficacy
EXTEND IA

Endovascular Therapy for Ischemic Stroke with Perfusion-Imaging Selection

EXTEND IA

IAT (Solitaire FR) vs usual care
1. Proximal AO (SCA, M1 M2)
2. Ischemic core <70 cc by CTP (Rapid Software)

Australia, New Zealand, 10 centers
Stopped early after 70 patients randomized

EXTEND IA

Reperfusion is % reduction of perfusion lesion volume at 24 hours. Early neurological improvement is NIHSS decrease of 8 or 0-1 at day 3.
All patients received IVT prior to randomization

100% stentriever in the IAT arm

Stopped early for efficacy

39 centers in US and Europe

LVO occlusion confirmed prior to randomization

Rapid Software
REVASCAT

ORIGINAL ARTICLE

Thrombectomy within 8 Hours after Symptom Onset in Ischemic Stroke

REVASCAT

Four centers in Catalonia, Spain
Also stopped for efficacy
• Why do the recent trials show a benefit with endovascular when prior trials have failed to do so?
 – Selection based upon evidence of large vessel occlusion (ICA terminus, M1)
 – Stentriever and ADAPT technique (direct aspiration with large bore catheter)
 – Fast work flow → overall shorter times to intervention
 – High severity stroke
 – More focused, effective recruitment
• What do the recent endovascular trials tell us?
 – TIME IS BRAIN
 • Most trials required groin puncture before 6 hours
 • Short time from stroke onset to groin puncture is associated with higher chances of better outcomes
 – Successful reperfusion is associated with better outcomes

<table>
<thead>
<tr>
<th>Summary</th>
<th>Age</th>
<th>NIHSS</th>
<th>ASPECTS</th>
<th>IVT</th>
<th>Year to IAT</th>
<th>GP TICI 2b</th>
<th>Death</th>
<th>SICH</th>
<th>NNT for mRS 0-2</th>
<th>NNT for death</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR CLEAN</td>
<td>66 - 17</td>
<td>9 - 20%</td>
<td>20%</td>
<td>18.7%</td>
<td>18.6%</td>
<td>60% IAT vs 15%</td>
<td>13.5% increase</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESCUE</td>
<td>71 - 16</td>
<td>9 - 20%</td>
<td>20%</td>
<td>17.2%</td>
<td>16.1%</td>
<td>60% IAT vs 15%</td>
<td>13.5% increase</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXTEND-IA</td>
<td>68 - 17</td>
<td>9 - 20%</td>
<td>20%</td>
<td>22.6%</td>
<td>20%</td>
<td>60% IAT vs 15%</td>
<td>13.5% increase</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHARP PRIIME</td>
<td>71 - 17</td>
<td>9 - 20%</td>
<td>20%</td>
<td>20%</td>
<td>18%</td>
<td>60% IAT vs 15%</td>
<td>13.5% increase</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REVASCAT</td>
<td>65 - 17</td>
<td>9 - 20%</td>
<td>20%</td>
<td>16.3%</td>
<td>15.6%</td>
<td>60% IAT vs 15%</td>
<td>13.5% increase</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What do the recent endovascular trials tell us?

- **TIME IS BRAIN**
 - Most trials required groin puncture before 6 hours
 - Short time from stroke onset to groin puncture is associated with higher chances of better outcomes
 - Successful reperfusion is associated with better outcomes

- Endovascular thrombectomy is not riskier than the standard of care (including IV tPA)
 - Similar mortality rates (10-20%)
 - Similar symptomatic ICH rates (up to 6%)

Endovascular thrombectomy is now standard of care for treatment of acute ischemic stroke

- **American Stroke Association 2015 Endovascular Update** recommends endovascular therapy with a stent retriever for patients meeting the following criteria:
 - Prestroke mRS score 0 to 1
 - Acute ischemic stroke receiving IV tPA within 4.5 hours of onset
 - Causative occlusion of the internal carotid artery or proximal MCA (M1)
 - Age ≥ 18 years
 - NIHSS score of ≥ 6
 - ASPECTS of ≥ 6
 - Treatment can be initiated (groin puncture) within 6 hours of symptom onset
• Patients who have unfavorable advanced neuroimaging (perfusion, collateral grade) may not benefit from endovascular rx
• The new guideline recommendations are inclusion criteria (not exclusions) because they don’t address:
 – Patients who are not eligible for IV tPA
 – Patients with a prestroke mRS > 1
 – Patients with “extended” time windows – those who physiologically have minimal infarct even after 6 hours
 – Patients with occlusions of M2 branches, ACA, PCA, basilar or vertebral arteries

• These are smaller subpopulations that may still benefit from endovascular therapy on a case by case basis, and require further study
 – Thus they should still be considered as potential candidates, and should be discussed with a vascular neurologist

• Evaluation and administration of IV tPA should not be delayed in potential endovascular patients!!!
 – Non-contrast head CT
 – CTA/MRA head and neck (should not delay giving IV tPA)
 – Advanced neuroimaging???

• Potential endovascular patients should be transferred to a Comprehensive Stroke Center
 – Discussion with vascular neurologist
 – 24/7 access to vascular neurology, neurosurgery, neurointensivists, neuroradiology, neurointerventionalists
 – Transfer should occur as soon as possible
 • Defer CTA/MRA and further imaging if performing them would delay transfer

Questions?